Initial Thoughts

I really wish Kaveri could have launched on laptops earlier in the year. While Trinity was a decent solution, Richland didn't really offer much in the way of real improvements, and then seeing Kaveri on desktops first and laptops second was more than a little disappointing. The good news is that Kaveri laptops should start shipping in the near future, and overall they offer a good blend of performance and features that should help AMD be more competitive in the growing world of laptop computing.

Our initial performance results look about right, perhaps even a little lower than we'll see from final shipping hardware. There's also plenty of potential for improved performance as more applications start to leverage OpenCL, but AMD has been beating that drum for a while and it's been a relatively slow process. Yes, there are applications that can perform much faster with an APU than with an Intel CPU, but we still need more. It's fine to talk about HSA and Compute Cores, but until they make a tangible difference in every day applications they're mostly talking points. For people that truly need compute performance, I suspect they're looking at much higher performance parts than an APU.

One interesting example AMD discussed was using an optimized JPEG decoder to process images and generate thumbnails in a Windows folder. This is actually something I can see as being useful to a lot of people, and AMD was able to speed up the process by 80% compared to an Intel laptop running the stock Windows JPEG decoder. However, it's not clear how much of that performance increase is AMD being faster than Intel as opposed to the default Windows JPEG decoder simply being slow.


Kaveri's Die Up Close

There are some notable omissions in our performance data right now as well. We were only able to test the highest performance Kaveri laptop APU, the FX-7600P, and even that was essentially in "beta" form. I think the 19W FX-7500 will be potentially more interesting, and if AMD is really able to hit close to max turbo speeds most of the time it could prove a potent alternative to Intel's 15W ULV processors. Something else I'm very interested in seeing is what sort of battery life AMD is able to coax out of these APUs, as Llano and Trinity both did quite well – or at least, they did well when the laptop OEM took time to get things right. And that is perhaps the biggest obstacle AMD faces right now: getting their APUs into laptops that don't cut corners in all the wrong places.

As I noted earlier, storage performance (i.e. having a pure SSD solution for the OS and primary applications) is now far more critical for most use cases than the choice of CPU. However, we can't even get $1000+ laptops to universally switch to SSDs, and it's going to be a long row to hoe getting anything priced under $800 to include one. You can just picture the bean counters: "Why are we using a $100 SSD that only holds 256GB instead of a $50 HDD that holds 1TB!? That's a terrible component choice!" On a similar note, getting a laptop with a good keyboard, trackpad, and screen is more difficult than it needs to be even on midrange laptops, and I've seen many an AMD-equipped laptop fall flat on its face thanks to penny pinching and cut corners in these areas. Finally, it's important to note that all batteries are not created equal; while it would be nice if a 56Wh battery was always a 56Wh battery, I know from experience that there's still a wide range of quality, including the ability to store a charge for more than a few weeks without going dead.

But these things cost money, and when you're saving $50-$100 by using an AMD APU instead of an Intel CPU, the mindset often becomes, "Where else can we save money?" The result is a race to the bottom, and if laptop OEMs aren't careful they'll lose more and more market share to alternative devices. (There's a thought: someone make a Kaveri-based Chromebook. That could be interesting!)

Bottom line: AMD's Kaveri APUs show plenty of promise. Now I want someone to build a nice AMD-equipped laptop for under $800 (with or without a ULV APU). Take the core elements of a good Ultrabook, swap out the Intel CPU/platform for an AMD Kaveri APU/platform, and keep the SSD, form factor, and screen. If one of the major OEMs can deliver that sort of product at a lower price than the Intel equivalent, it would be an easy recommendation.

AMD Kaveri FX-7600P GPU Performance Preview
Comments Locked

125 Comments

View All Comments

  • Roland00Address - Wednesday, June 4, 2014 - link

    It turbos but not as well as Intel
  • Galatian - Wednesday, June 4, 2014 - link

    And because Intel is able to implement a better turbo they are somehow cheating? I mean it still is a advantage for the consumer in the end. Race to idle and all.
  • zaza991988 - Thursday, June 5, 2014 - link

    Actually sometimes Turbo helps with the overall energy efficiency. Turbo enable to push the CPU to the limit and finish the high demanding task quickly so it can return into a lower power state afterwards. So you are temporarily increasing the instantaneous power to get a better an overall energy efficiency.
  • sspiff - Wednesday, June 4, 2014 - link

    The TDP of AMD's offering includes the much more powerful GPU (compared to Intel's HD4400 in the i7). For the benchmark results, the Intel was paired with a discrete nVidia card (750M), which also guzzles power NOT included in the 15W TDP of the i7.

    I'm not familiar with what other parts are on-/off-die for these CPU's, but it's not fair to compare the power envelopes on a spec sheet like you're doing. The fair test would be to measure full-system power consumption of two comparable devices, which is sadly not possible at this time, as no Kaveri laptops have shipped yet.
  • Torashin - Wednesday, June 4, 2014 - link

    Remember power consumption increases exponentially with frequency, and this phenomena is even more accentuated with Kaveri because of the process used. So what I'm saying is that the 19W APU's likely wouldn't be that much slower than the 35W one.
  • Drumsticks - Wednesday, June 4, 2014 - link

    Maybe its also true of frequency, but I believe you're looking for voltage. Power consumption for two different frequencies at the same voltage is much different than two voltages at the same frequency.

    I could be wrong, though.
  • JumpingJack - Wednesday, June 4, 2014 - link

    Buzzzzz, wrong. Power = C*f*(V^2), power is linear with respect to frequency and quadratic with respect to voltage. (C is effective capacitance). Google "Power CMOS Circuits".
  • zaza991988 - Thursday, June 5, 2014 - link

    Actually the relation between power and frequency is linear. The relation between the power and voltage is quadratic. p = c*f*v^2. and a higher TDP allows the CPU to stay at a higher performance state for a larger amount of time. you can compare the performance between a 15 watt TDP and 28 watt TDP in the following link. (rMBP 13 has 28 TDP ship and air has 15 or 17)
    http://www.notebookcheck.net/Review-Apple-MacBook-...
  • eanazag - Wednesday, June 4, 2014 - link

    Close compared to the i7 ULV and GT 750. Often better than the i5. It is good against what will likely cost at least $100 to $200 more. Battery life that is 80% and weight that is 110% of those Intel machines might be a reasonable trade off saving $200.
  • Dan Ritchie - Wednesday, June 4, 2014 - link

    On other sites (with slides) they're comparing the 19 watt part against the 15 watt part, not the 35 watt part.

Log in

Don't have an account? Sign up now