For a lot of enthusiasts, a full custom watercooling (or liquid cooling, if you prefer) can be essentially the final frontier. Closed loop coolers have been taking off in a big way, bringing watercooling to the masses, but sacrifices are made in the process. The overwhelming majority of closed loop coolers employ aluminum radiators instead of the copper and brass that are used in custom loops, and the pumps tend to be on the weaker side, presumably to both keep noise down and because there's really only one component to cool. I'm still enthusiastic about these products because they can offer excellent cooling performance without placing the undue strain on the motherboard that a heavy tower air cooler can, and they're typically a win for system integrators who don't want to risk shipping damage. Whether you like it or not, this is the direction the market is heading, although pure air cooling most definitely still has its place.

So why look at watercooling? First, establish how important noise is to you. Watercooling systems (and this includes CLCs) occupy an interesting middle ground. For pure thermal-to-noise efficiency, they're basically unbeatable, but if you want absolute or near absolute silence, you actually have to go back to conventional air cooling. The reason is that watercooling necessitates using a water pump, and while they can be tuned down for efficiency, they're never going to be dead silent. An air cooler will always be a fan plus heatsink; watercooling adds a pump.

Watercooling is so efficient because it effectively allows you to spread your system's heat load across a tremendously greater surface area. Water transfers heat exceptionally well, and radiators in turn will be massive, densely packed arrays of copper fins. By being able to spread that heat across one or multiple radiators, you also allow yourself to use multiple fans at low speeds. Alternatively, you substantially increase your system's heat capacity, so if you're looking to overclock a little more aggressively, watercooling may be the way to go.

In my opinion, one of the biggest reasons to go for it is actually the potential for watercooling graphics cards, especially in a multi-GPU setup. While the stock blower cooler for the NVIDIA GeForce GTX 780 is actually a work of art and does a stellar job of keeping that card cool, it simply can't hold a candle to a full-card waterblock that can absorb the heat from every heat-generating component on the card, especially the power circuitry. Suddenly you're not risking tripping the 780's boost clock thermal limits anymore, and the blower coolers aren't generating any more of a racket for your trouble.

Of course, building a custom loop is insanely daunting. This is the first time I've ever built one and while guides exist all over the internet, they all feel a bit incomplete in one aspect or another. There's also the fear of spraying coolant all over the inside of your case, or accidentally frying graphics cards when you install the waterblock, etc. It's also a decent amount of work, and it's not cheap. Truthfully, if I hadn't been able to put this together for AnandTech, I don't know that I'd have ever made the attempt. But the opportunity did present itself and now I can at least share the results with you.

The Components, Part 1
Comments Locked


View All Comments

  • hot120 - Monday, September 30, 2013 - link

    Awesome article!
  • blanarahul - Monday, September 30, 2013 - link

    Hmm.. Can you try cooling those 780s alone? Overclocking the CPU seems pointless on Haswell.
  • valkyrie743 - Monday, September 30, 2013 - link

    overclocking haswell is not pointless. just is a pain (same with ivy bridge) cause intel decided to be cheap and not solder the IHS to the cpu. if you do a mild overclock its fine give or take how bad the tim on the cpu/ihs is. but if you plan on doing high overclocks and water cooling like this. you might as well de-lid the cpu and apply your own tim. temps on air (if done right) drop a good 15 to 20C under load. I've seen people hitting 90 C and go down to 70 or less underload. and thats on air.

    the reason why i have no upgraded from my sandy bridge 2600K. @4.5ghz right now at 1.28 volts and my max temp running intel burn test was 70C (air)
  • The Von Matrices - Monday, September 30, 2013 - link

    Please read my post in response to NeatOman. The result is correct but the reasoning is incorrect.
  • gandergray - Tuesday, October 1, 2013 - link

    For information about removing the cpu lid or integrated heat spreader, see the work performed by Idontcare: .
  • iTzSnypah - Monday, September 30, 2013 - link

    You are cooling way too much with only 600mm worth of radiators and your deltaT is obscene. Take out 1x GTX780 and retest if possible.
  • NeatOman - Monday, September 30, 2013 - link

    I think the thermal paste between the cpu and the lid are the limiting factor here, i believe that not only will 4770K do better with better thermal paste in between the lid and cpu on just air cooling alone but also might have a larger difference between the air and water cooling.

    And of course there is also a full delid which i think wont be much of a threat because with water cooling you don't need the motherboard to support a large heavy cooler.
  • NeatOman - Monday, September 30, 2013 - link

    Sorry, i meant that you wont need to put a lot of pressure like if you where supporting a large air cooler with the motherboard.
  • The Von Matrices - Monday, September 30, 2013 - link

    The issue is not the composition of the thermal paste between the die and the lid; it is the thickness of the thermal paste between the die and the lid. It's widely reported that in Ivy Bridge and Haswell there is way too much of a gap between the die and the lid due to the thickness of the glue used to secure the lid to the package. You can solve this by removing the lid, using a razor blade to remove all the glue, then put on new TIM and place the lid back on the package. No matter what new TIM you use you will get drastically reduced temperatures.

    Either way, Haswell runs hot due to its FIVR, and there's nothing that can be done through beefier heatsinks, delidding, or changing thermal paste that will make it cooler than an equivalently modified Ivy Bridge.
  • dragosmp - Monday, September 30, 2013 - link

    Still, it is incomplete. The thermal transfer formula is simply Rth=rho*L/S, more thermal resistance (Rth) more the temperature delta is high between the source and ambient: deltaT=Power*Rth
    Asuming the power is constant, to decrease deltaT you need to decrease the thermal resistance, so:
    *S is the die surface, can't change that
    *L is the thickness of paste - you're right, it needs to be as thin as possible; put 2x too much and you have twice the deltaT
    *rho - thermal resistivity (1/lambda) - it depends on the material; Intel does use cheap paste with a conductivity around 3; were they to use fluxless solder or at least some AS5 they'd decrease the thermal resitance by a factor of 2 easily, thus offsetting a thicker than needed layer of paste.

    My 2 cents: for performance the paste must be removed and replaced with something better plus as you say remove the glue to reduce the thickness. Of course one should be careful not to chip the die, but these two things really help.

Log in

Don't have an account? Sign up now