Benchmarking Suite 2017

2017 CPU

For our Ryzen review, we are implementing our new CPU testing benchmark suite, fully scripted as of 2/17. This means that with a fresh OS install, we can configure the OS to be more consistent, install the new benchmarks, maintain version consistency without random updates and start running the tests in under 5 minutes. After that it's a one button press to start an 8-10hr test (with a high-performance core) with nearly 100 relevant data points in the benchmarks given below. The tests cover a wide range of segments, some of which will be familiar but some of the tests are new to benchmarking in general, but still highly relevant for the markets they come from.

Our new CPU tests go through six main areas. We cover the Web (we've got an un-updateable version of Chrome 56), general system tests (opening tricky PDFs, emulation, brain simulation, AI, 2D image to 3D model conversion), rendering (ray tracing, modeling), encoding (compression, AES, h264 and HEVC), office based tests (PCMark and others), and our legacy tests, throwbacks from another generation of bad code but interesting to compare.

A side note on OS preparation. As we're using Windows 10, there's a large opportunity for something to come in and disrupt our testing. So our default strategy is multiple: disable the ability to update as much as possible, disable Windows Defender, uninstall OneDrive, disable Cortana as much as possible, implement the high performance mode in the power options, and disable the internal platform clock which can drift away from being accurate if the base frequency drifts (and thus the timing ends up inaccurate).

Web Tests on Chrome 56

Sunspider
Kraken
Octane
Web13
Web15

System Tests

PDF Opening
FCAT
3DPM v21
Dolphin v5.0
DigiCortex v1.20
Agisoft PS v1.0 

Rendering Tests

Corona
Blender 2.78.1
LuxMark CPU C++
LuxMark CPU OpenCL
POV-Ray
CB15 ST
CB15 MT

Encoding Tests

7-Zip
WinRAR
TrueCrypt
HandBrake 264-LQ
HandBrake 264-HQ
HandBrake 265-4K (reworked from Ryzen 7 review)

Office / Professional

PCMark8 
Chromium Compile (new for Ryzen 5)
SYSmark 2014 / SE

Legacy Tests

3DPM v1 ST / MT
x264 HD 3 Pass 1, Pass 2
CB 11.5 ST / MT
CB 10 ST / MT

A side note - a couple of benchmarks (LuxMark) weren't fully 100% giving good data during testing. Need to go back and re-work this part of our testing.

2017 GPU

For our new set of GPU tests, we wanted to think big. There are a lot of users in the ecosystem that prioritize gaming above all else, especially when it comes to choosing the correct CPU. If there's a chance to save $50 and get a better graphics card for no loss in performance, then this is the route that gamers would prefer to tread. The angle here though is tough - lots of games have different requirements and cause different stresses on a system, with various graphics cards having different reactions to the code flow of a game. Then users also have different resolutions and different perceptions of what feels 'normal'. This all amounts to more degrees of freedom than we could hope to test in a lifetime, only for the data to become irrelevant in a few months when a new game or new GPU comes into the mix. Just for good measure, let us add in DirectX 12 titles that make it easier to use more CPU cores in a game to enhance fidelity.

Our original list of nine games planned in February quickly became six, due to the lack of professional-grade controls on Ubisoft titles. If you want to see For Honor, Steep or Ghost Recon: Wildlands benchmarked on AnandTech, point Ubisoft Annecy or Ubisoft Montreal in my direction. While these games have in-game benchmarks worth using, unfortunately they do not provide enough frame-by-frame detail to the end user, despite using it internally to produce the data the user eventually sees (and it typically ends up obfuscated by another layer as well). I would instead perhaps choose to automate these benchmarks via inputs, however the extremely variable loading time is a strong barrier to this.

So we have the following benchmarks as part of our 4/2 script, automated to the point of a one-button run and out pops the results four hours later, per GPU. Also listed are the resolutions and settings used.

Civilization 6 (1080p Ultra, 4K Ultra)
Ashes of the Singularity: Escalation* (1080p Extreme, 4K Extreme)
Shadow of Mordor (1080p Ultra, 4K Ultra)
Rise of the Tomb Raider #1 - GeoValley (1080p High, 4K Medium)
Rise of the Tomb Raider #2 - Prophets (1080p High, 4K Medium)
Rise of the Tomb Raider #3 - Mountain (1080p High, 4K Medium)
Rocket League (1080p Ultra, 4K Ultra)
Grand Theft Auto V (1080p Very High, 4K High)

For each of the GPUs in our testing, these games (at each resolution/setting combination) are run four times each, with outliers discarded. Average frame rates, 99th percentiles and 'Time Under x FPS' data is sorted, and the raw data is archived.

The four GPUs we've managed to obtain for these tests are:

MSI GTX 1080 Gaming X 8G
ASUS GTX 1060 Strix 6G
Sapphire Nitro R9 Fury 4GB
Sapphire Nitro RX 480 8GB

In our testing script, we save a couple of special things for the GTX 1080 here. The following tests are also added:

Civilization 6 (8K Ultra, 16K Lowest)
Ashes of the Singularity: Escalation* (8K Extreme, 16K Extreme)

These two benchmarks, with a little coercion, are able to be run beyond the specifications of the monitor being used, allowing for 'future' testing of GPUs at 8K and 16K with some amusing results. We are only running these tests on the GTX 1080, because there's no point watching a slideshow more than once.

*A note on Ashes. During our testing, the 2.2 update came through automatically, and broke our scripting methods due to a new splashscreen/popup. We worked to find a solution that worked one minute, and then stopped working 30 minutes later, and it was decided due to time limits that we'd look into the matter after the review.

Test Bed Setup and Hardware Benchmarking Performance: CPU System Tests
Comments Locked

254 Comments

View All Comments

  • Phiro69 - Tuesday, April 11, 2017 - link

    Thank you Ian!
    Maybe at some point as part of your benchmark description you have a url to a page showing basic (e.g. exactly the level of information you provided above but not step by step hand holding) benchmark setup instructions. I know I wonder if I've configured my builds correctly when I put together new systems; I buy the parts based on benchmarks but I don't ever really validate they perform at that level/I have things set correctly.
  • qupada - Tuesday, April 11, 2017 - link

    I was curious about this too. Obviously a direct comparison between your Windows test and my Linux one is going to be largely meaningless but I felt the need to try anyway. Since Linux is all I have, this is what we get.

    My Haswell-EP Xeon E5-1660v3 - approximately an i7-5960X with ECC RAM, and that CPU seems to be oft-compared to the 1800X you have put in your results - clocks in at 78:36 to compile Chromium (59.0.3063.4), or 18.31 compiles per day (hoorah for the pile of extra money I spent on it resulting in such a small performance margin). However that's for the entire process, from unpacking the tarball, compiling, then tarring and compressing the compiled result. My machine is running Gentoo, it was 'time emerge -OB chromium' (I didn't feel like doing it manually to get just the compile). Am I reading right you've used the result of timing the 'ninja' compile step only?

    I only ask because there definitely could be other factors in play for this one - for the uninitiated reading this comment, Chromium is a fairly massive piece of software, the source tar.xz file for the version I tried is 496MB (decompressing to 2757MB), containing around 28,000 directories and a shade under 210,000 files. At that scale, filesystem cache is definitely going to come into play, I would probably expect a slightly different result for a freshly rebooted machine versus one where the compile was timed immediately after unpacking the source code and it was still in RAM (obviously less of a difference on an SSD, but probably still not none).

    It is an interesting test metric though, and again I haven't done this on WIndows, but there is a chunk in the middle of the process that seems to be single-threaded on a Linux compile (probably around 10% of the total wall clock time), so it is actually quite nice that it will benefit from both multi-core and single-core performance and boost clocks.

    Also with a heavily multi-threaded process of that sort of duration, probably a great test of how long you get before thermal throttling starts to hurt you. I have to admit I'm cheating a bit by watercooling mine (not overclocked though) so it'll happily run 3.3GHz on a base clock of 3.0 across all eight cores for hours on end at around ~45°C/115°F.
  • rarson - Tuesday, April 11, 2017 - link

    14393.969 was released March 20th, any reason you didn't use that build?
  • Ian Cutress - Friday, April 14, 2017 - link

    Because my OS is already locked down for the next 12-18 months of testing.
  • Konobi - Tuesday, April 11, 2017 - link

    I don't know what's up with those FPS number in rocket league 1080p. I have ye olde FX-8350 @ 4.8GHz and a GTX 1070 @ 2.1GHz and I get 244fps max and 230FPS average at 1080p Ultra.
  • Ian Cutress - Tuesday, April 11, 2017 - link

    I'm running a 4x4 bot match on Aquadome. Automated inputs to mimic gameplay and camera switching / tricks, FRAPS over 4 minutes of a match.
  • jfmonty2 - Wednesday, April 12, 2017 - link

    Why Aquadome specifically? It's been criticized for performance issues compared to most of the other maps in the game, although the most recent update has improved that.
  • Ian Cutress - Friday, April 14, 2017 - link

    On the basis that it's the most strenuous map to test on. Lowest common denominator and all that.
  • Adam Saint - Tuesday, April 11, 2017 - link

    "Looking at the results, it’s hard to notice the effect that 12 threads has on multithreaded CPU tests"

    Perhaps you mean *not* hard to notice? :)
  • coder543 - Tuesday, April 11, 2017 - link

    I agree. That was also confusing.

Log in

Don't have an account? Sign up now