After Swift Comes Cyclone Oscar

I was fortunate enough to receive a tip last time that pointed me at some LLVM documentation calling out Apple’s Swift core by name. Scrubbing through those same docs, it seems like my leak has been plugged. Fortunately I came across a unique string looking at the iPhone 5s while it booted:

I can’t find any other references to Oscar online, in LLVM documentation or anywhere else of value. I also didn’t see Oscar references on prior iPhones, only on the 5s. I’d heard that this new core wasn’t called Swift, referencing just how different it was. Obviously Apple isn’t going to tell me what it’s called, so I’m going with Oscar unless someone tells me otherwise.

Oscar is a CPU core inside M7, Cyclone is the name of the Swift replacement.

Cyclone likely resembles a beefier Swift core (or at least Swift inspired) than a new design from the ground up. That means we’re likely talking about a 3-wide front end, and somewhere in the 5 - 7 range of execution ports. The design is likely also capable of out-of-order execution, given the performance levels we’ve been seeing.

Cyclone is a 64-bit ARMv8 core and not some Apple designed ISA. Cyclone manages to not only beat all other smartphone makers to ARMv8 but also key ARM server partners. I’ll talk about the whole 64-bit aspect of this next, but needless to say, this is a big deal.

The move to ARMv8 comes with some of its own performance enhancements. More registers, a cleaner ISA, improved SIMD extensions/performance as well as cryptographic acceleration are all on the menu for the new core.

Pipeline depth likely remains similar (maybe slightly longer) as frequencies haven’t gone up at all (1.3GHz). The A7 doesn’t feature support for any thermal driven CPU (or GPU) frequency boost.

The most visible change to Apple’s first ARMv8 core is a doubling of the L1 cache size: from 32KB/32KB (instruction/data) to 64KB/64KB. Along with this larger L1 cache comes an increase in access latency (from 2 clocks to 3 clocks from what I can tell), but the increase in hit rate likely makes up for the added latency. Such large L1 caches are quite common with AMD architectures, but unheard of in ultra mobile cores. A larger L1 cache will do a good job keeping the machine fed, implying a larger/more capable core.

The L2 cache remains unchanged in size at 1MB shared between both CPU cores. L2 access latency is improved tremendously with the new architecture. In some cases I measured L2 latency 1/2 that of what I saw with Swift.

The A7’s memory controller sees big improvements as well. I measured 20% lower main memory latency on the A7 compared to the A6. Branch prediction and memory prefetchers are both significantly better on the A7.

I noticed large increases in peak memory bandwidth on top of all of this. I used a combination of custom tools as well as publicly available benchmarks to confirm all of this. A quick look at Geekbench 3 (prior to the ARMv8 patch) gives a conservative estimate of memory bandwidth improvements:

Geekbench 3.0.0 Memory Bandwidth Comparison (1 thread)
  Stream Copy Stream Scale Stream Add Stream Triad
Apple A7 1.3GHz 5.24 GB/s 5.21 GB/s 5.74 GB/s 5.71 GB/s
Apple A6 1.3GHz 4.93 GB/s 3.77 GB/s 3.63 GB/s 3.62 GB/s
A7 Advantage 6% 38% 58% 57%

We see anywhere from a 6% improvement in memory bandwidth to nearly 60% running the same Stream code. I’m not entirely sure how Geekbench implemented Stream and whether or not we’re actually testing other execution paths in addition to (or instead of) memory bandwidth. One custom piece of code I used to measure memory bandwidth showed nearly a 2x increase in peak bandwidth. That may be overstating things a bit, but needless to say this new architecture has a vastly improved cache and memory interface.

Looking at low level Geekbench 3 results (again, prior to the ARMv8 patch), we get a good feel for just how much the CPU cores have improved.

Geekbench 3.0.0 Compute Performance
  Integer (ST) Integer (MT) FP (ST) FP (MT)
Apple A7 1.3GHz 1065 2095 983 1955
Apple A6 1.3GHz 750 1472 588 1165
A7 Advantage 42% 42% 67% 67%

Integer performance is up 44% on average, while floating point performance is up by 67%. Again this is without 64-bit or any other enhancements that go along with ARMv8. Memory bandwidth improves by 35% across all Geekbench tests. I confirmed with Apple that the A7 has a 64-bit wide memory interface, and we're likely talking about LPDDR3 memory this time around so there's probably some frequency uplift there as well.

The result is something Apple refers to as desktop-class CPU performance. I’ll get to evaluating those claims in a moment, but first, let’s talk about the other big part of the A7 story: the move to a 64-bit ISA.

A7 SoC Explained The Move to 64-bit
Comments Locked

464 Comments

View All Comments

  • robinthakur - Wednesday, September 18, 2013 - link

    Agreed, the screen on my old galaxy 3 was awful enough for me to dump it and get a iPhone 5. Weird bluey-green tinting, incredibly fuzzy text, unreadable in sunlight and over saturation. The trick with turning on only the active pixels is a nice one, but I'd still rather have an accurately calibrated screen that doesn't present content incorrectly.
  • Gorgenapper - Wednesday, September 18, 2013 - link

    This was the reason why I passed on the Galaxy S3, even though a lot of review sites were touting it as having super crisp images and text, eye popping colors, and so on. I saw a demo unit in person, and the screen was simply not comparable to that of my iPhone 4S. Skin tones were orange on the GS3, yellow images were greenish, and through all of it I could notice the pixellation from the pentile arrangement of the LEDs. Also, the demo unit had screen burn in after only a week despite the display changing every second or so, while the demo units for the iPhones were still going strong and bright. AMOLED is crap, give me LCD any day.
  • robinthakur - Wednesday, September 18, 2013 - link

    You aren't comparing like with like though. The people who want a crazy 41MP feature phone with a camera that juts out of the back (meaning it won't lie flat) are not the same ones that want a premium iPhone. In truth, I don't think there will be a big demand for it. Yes I'm sure that the picture performance on a 1020 would absolutely wipe the floor with the camera in the 5S, but I would never consider buying one because it looks ugly and impractical and harkens back to the bad old days of phone design where function bested form IMO!
  • KeypoX - Wednesday, September 18, 2013 - link

    Apple's biggest advantage is being a second mover. Not a first. They have never been first in anything.

    Not first in:
    Touch screen device/phone
    App store
    Tablet
    Finger print reader
    High res screens

    The biggest advantage is they are SECOND movers and take these devices to the next level.
  • dugbug - Wednesday, September 18, 2013 - link

    Panties in a bunch? WTF is up with people and apple.
  • Gridlock - Wednesday, September 18, 2013 - link

    The Newton alone makes most of your arguments laughable.
  • André - Wednesday, September 18, 2013 - link

    The iPhone 4 was the first phone to ship with more than 300 ppi screen 960 x 640 3,5".

    They were the first with FireWire, USB, Thunderbolt, DisplayPort and shipping a product with an PCIe SSD.

    First to ship a device with an Rogue implementation and going with a fully custom ARMv8 64-bit processor.

    If anything, they are not second movers and because they are so vertically integrated they can control both hardware and software.
  • code65536 - Wednesday, September 18, 2013 - link

    So is it safe to assume the A7 has an out-of-order execution core?
  • ViRGE - Wednesday, September 18, 2013 - link

    Swift was already OOE.
  • tipoo - Wednesday, September 18, 2013 - link

    A6/Swift already did. A7 may be more out of order, it's not an all or nothing thing.

Log in

Don't have an account? Sign up now