The 2017 Benchmark Suite

For our review, we are implementing our fresh CPU testing benchmark suite, using new scripts developed specifically for this testing. This means that with a fresh OS install, we can configure the OS to be more consistent, install the new benchmarks, maintain version consistency without random updates and start running the tests in under 5 minutes. After that it's a one button press to start an 8-10hr test (with a high-performance core) with nearly 100 relevant data points in the benchmarks given below for CPUs, followed by our CPU gaming tests which run for 4-5 hours for each of the GPUs used. The CPU tests cover a wide range of segments, some of which will be familiar but some of the tests are new to benchmarking in general, but still highly relevant for the markets they come from.

Our new CPU tests go through six main areas. We cover the Web (we've got an un-updateable version of Chrome 56), general system tests (opening tricky PDFs, emulation, brain simulation, AI, 2D image to 3D model conversion), rendering (ray tracing, modeling), encoding (compression, AES, h264 and HEVC), office based tests (PCMark and others), and our legacy tests, throwbacks from another generation of bad code but interesting to compare.

All of our benchmark results can also be found in our benchmark engine, Bench.

A side note on OS preparation. As we're using Windows 10, there's a large opportunity for something to come in and disrupt our testing. So our default strategy is multiple: disable the ability to update as much as possible, disable Windows Defender, uninstall OneDrive, disable Cortana as much as possible, implement the high performance mode in the power options, and disable the internal platform clock which can drift away from being accurate if the base frequency drifts (and thus the timing ends up inaccurate).

Web Tests on Chrome 56

Sunspider 1.0.2
Mozilla Kraken 1.1
Google Octane 2.0
WebXPRT15

System Tests

PDF Opening
FCAT
3DPM v2.1
Dolphin v5.0
DigiCortex v1.20
Agisoft PhotoScan v1.0

Rendering Tests

Corona 1.3
Blender 2.78
LuxMark v3.1 CPU C++
LuxMark v3.1 CPU OpenCL
POV-Ray 3.7.1b4
Cinebench R15 ST
Cinebench R15 MT

Encoding Tests

7-Zip 9.2
WinRAR 5.40
AES Encoding (TrueCrypt 7.2)
HandBrake v1.0.2 x264 LQ
HandBrake v1.0.2 x264-HQ
HandBrake v1.0.2 HEVC-4K

Office / Professional

PCMark8
Chromium Compile (v56)
SYSmark 2014 SE

Legacy Tests

3DPM v1 ST / MT
x264 HD 3 Pass 1, Pass 2
Cinebench R11.5 ST / MT
Cinebench R10 ST / MT

CPU Gaming Tests

For our new set of GPU tests, we wanted to think big. There are a lot of users in the ecosystem that prioritize gaming above all else, especially when it comes to choosing the correct CPU. If there's a chance to save $50 and get a better graphics card for no loss in performance, then this is the route that gamers would prefer to tread. The angle here though is tough - lots of games have different requirements and cause different stresses on a system, with various graphics cards having different reactions to the code flow of a game. Then users also have different resolutions and different perceptions of what feels 'normal'. This all amounts to more degrees of freedom than we could hope to test in a lifetime, only for the data to become irrelevant in a few months when a new game or new GPU comes into the mix. Just for good measure, let us add in DirectX 12 titles that make it easier to use more CPU cores in a game to enhance fidelity.

Our original list of nine games planned in February quickly became six, due to the lack of professional-grade controls on Ubisoft titles. If you want to see For Honor, Steep or Ghost Recon: Wildlands benchmarked on AnandTech, please point Ubisoft Annecy or Ubisoft Montreal in my direction. While these games have in-game benchmarks worth using, unfortunately they do not provide enough frame-by-frame detail to the end user, despite using it internally to produce the data the user eventually sees (and it typically ends up obfuscated by another layer as well). I would instead perhaps choose to automate these benchmarks via inputs, however the extremely variable loading time is a strong barrier to this.

So we have the following benchmarks as part of our 4/2 script, automated to the point of a one-button run and out pops the results four hours later, per GPU. Also listed are the resolutions and settings used.

  • Civilization 6 (1080p Ultra, 4K Ultra)
  • Ashes of the Singularity: Escalation* (1080p Extreme, 4K Extreme)
  • Shadow of Mordor (1080p Ultra, 4K Ultra)
  • Rise of the Tomb Raider #1 - GeoValley (1080p High, 4K Medium)
  • Rise of the Tomb Raider #2 - Prophets (1080p High, 4K Medium)
  • Rise of the Tomb Raider #3 - Mountain (1080p High, 4K Medium)
  • Rocket League (1080p Ultra, 4K Ultra)
  • Grand Theft Auto V (1080p Very High, 4K High)

For each of the GPUs in our testing, these games (at each resolution/setting combination) are run four times each, with outliers discarded. Average frame rates, 99th percentiles and 'Time Under x FPS' data is sorted, and the raw data is archived.

The four GPUs we've managed to obtain for these tests are:

  • MSI GTX 1080 Gaming X 8G
  • ASUS GTX 1060 Strix 6G
  • Sapphire Nitro R9 Fury 4GB
  • Sapphire Nitro RX 480 8GB

In our testing script, we save a couple of special things for the GTX 1080 here. The following tests are also added:

  • Civilization 6 (8K Ultra, 16K Lowest)

This benchmark, with a little coercion, are able to be run beyond the specifications of the monitor being used, allowing for 'future' testing of GPUs at 8K and 16K with some amusing results. We are only running these tests on the GTX 1080, because there's no point watching a slideshow more than once.

*As an additional to this review, we do not have any CPU gaming data on Skylake-X. We ran a set of tests before Threadripper arrived, but now having had a chance to analyze the data, despite being on the latest BIOS and setup, there are still issues with performance that we need to nail down once this review is out of the way.

Test Bed and Setup Benchmarking Performance: CPU System Tests
Comments Locked

347 Comments

View All Comments

  • BOBOSTRUMF - Friday, August 11, 2017 - link

    Actually Intel's 140 can consume more than 210 if You want the top unrestricted performance limited. Read tomshardware review
  • Filiprino - Thursday, August 10, 2017 - link

    How comes WinRAR is faster with the 10 core Broadwell than with the 10 core Skylake?
    What did they change on Cinebench going from 10 to 11.5? Threadripper is the faster CPU in Cinebench 10, but in the newer one it is not. Then again Cinebench 15 shows TR as the faster CPU. Is this benchmark reliable?

    How comes Chromium compilation is so slow? Others have pointed out they get much better scaling (linear speedup). That makes sense because compilation basically consists in launching isolated processes (compiler instances). Is this related with the segfaulting problem under GNU/Linux systems?

    For encoding I would start to use FFmpeg when benchmarking so many cores. In my brain lies a memory of FFmpeg being faster than Handbrake for the same number of cores. Maybe the GUI loop interrupts the process in a performance-unfriendly way. Too much overhead. HPC workloads can suffer even from the network driver having too many interrupts (hence, Linux tickless configuration).

    I have read SYSMARK Results and I find strange that TR media results are slower than data, being TR slower than Intel in media and faster than Intel in data. Isn't SYSMARK from BAPCo (http://www.pcworld.com/article/3023373/hardware/am... You already point it out on the article, sorry.

    How comes R9 Fury in Shadow of Mordor has AMD and Intel CPUs running consistently at two different frame rates (~95 vs ~103)?

    The same but with the GTX 1080. Both cases happen regardless of the Intel architecture (Haswell, Broadwell and Skylake all have the same FPS value).

    What happens with NVIDIA driver on Rocket League? Bad caching algorithm (TR has more cores/threads -> more cache available to store GPU command data)? You say you had issues but, what are your thoughts?
    How comes GTA V has those Under 60 and 30 FPS graphs knowing that the game is available for PS4 and XBox One (it has been already optimized for two CCX CPU, at least there is a version for that case)? Nevertheless, with NVIDIA cards, 2 seconds out of 90 is not that much.

    What I can think is that all these benchmarks are programmed using threading libraries from the "good old times" due to bad scaling. And in some cases there is architecture-specific targeted code. I also include in my conception the small dataset being used. I also would not make a case out of a benchmark programmed with code having false sharing (¡:O!)

    Currently for gaming, it seems that the easiest way is to have a Virtual Machine with PCIe passthrough pinned to one of the MCM dies.

    As a suggestion to Anandtech, I would like to see more free (libre) software being used to measure CPU performance, compiling the benchmarks from source against the target CPU architecture. Something like Phoronix. Maybe you could use PTS (Phoronix Test Suite).
  • Filiprino - Thursday, August 10, 2017 - link

    Positive things: ThreadRipper is under its TDP consumption. Intel is more power hungry. The Intel 16-core might go through the rough in power consumption.
    Good gaming performance. Intel is generally better, but TR still offers a beefy CPU for that too, losing a few frames only.
    Strong rendering performance.
    Strong video encoding performance.

    When you talk about IPC, it would be useful to measure it with profiling tools, not just getting "points", "miliseconds" and "seconds".
    Seeing how these benchmarks do not scale by much beyond 10 cores you might realize software has to get better.
  • Chad - Thursday, August 10, 2017 - link

    Second ffmpeg test (pretty please!)
  • mapesdhs - Thursday, August 10, 2017 - link


    Ian, a query about the CPU Legacy Tests: why do you reckon does the 1920X beat both 1950X and 1950X-G for CB 11.5 MT, yet the latter win out for CB 10 MT? Is there a max-thread limit in V11.5? Filiprino asked much the same above.

    "...and so losing half the threads in Game Mode might actually be a detriment to a workstation implementation."

    Isn't that the whole point though? For most workstation tasks, don't use Game Mode. There will be exceptions of course, but in general...

    Btw, where's C-ray? ;)

    Ian.
  • Da W - Thursday, August 10, 2017 - link

    ALL OF YOU COMPLAINERS: START A TECH REVIEW WEBSITE YOURSELVES AND STFU!
  • hansmuff - Thursday, August 10, 2017 - link

    Don't read the comments. Also, a lot of the "complaints" are read by Ryan and he actually addresses them and his articles improve as a result of criticism. He's never been bad, but you can see an ascension in quality over time, along with his partaking in critical commentary.
    IOW, we don't really need a referee.
  • hansmuff - Thursday, August 10, 2017 - link

    And of course I mean Ian, not Ryan.
  • mapesdhs - Friday, August 11, 2017 - link

    It is great that he replies at all, and does so to quite a lot of the posts too.
  • Kepe - Thursday, August 10, 2017 - link

    Wait a second, according to AMD and all the other articles about the 1950X and Game Mode, game mode disables all the physical cores of one of the CPU clusters and leaves SMT on, so you get 8 cores and 16 threads. It doesn't just turn off SMT for a 16 core / 16 thread setup.

    AMD's info here: https://community.amd.com/community/gaming/blog/20...

Log in

Don't have an account? Sign up now