Test Setup

As we mentioned in our introduction, Intel's 9-series chipset were designed from the start to allow future compatibility with Broadwell. As a result with a BIOS update we're able to drop these processors into our existing MSI and ASUS Z97 boards, though not without some pre-release BIOS teething issues.

Test Setup
Processor Intel i7-5775C, 4C/8T
Intel i5-5675C, 4C/4T
Motherboard MSI Z97A Gaming 6
ASUS Z97 Pro
DRAM G.Skill RipjawsZ 4x4GB DDR3-1866 C9 at DDR3-1600
Low End GPU Integrated
ASUS R7 240 2GB DDR3
Dual Graphics with R7 240
Mid Range GPU MSI R9 285 Gaming 2GB
MSI GTX 770 Lightning 2GB
High End GPU MSI R9 290X Gaming LE 4GB
ASUS GTX 980 Strix 4GB
Power Supply OCZ 1250W Gold
Storage Drive Crucial MX200 1TB
Operating System Windows 7.1 64-bit, Build 7601
CPU Cooler Cooler Master Nepton 140XL CLC

Many thanks to...

We must thank the following companies for kindly providing hardware for our test bed:

Thank you to AMD for providing us with the R9 290X 4GB GPUs.
Thank you to ASUS for providing us with GTX 980 Strix GPUs and the R7 240 DDR3 GPU.
Thank you to ASRock and ASUS for providing us with some IO testing kit.
Thank you to Cooler Master for providing us with Nepton 140XL CLCs.
Thank you to Corsair for providing us with an AX1200i PSU.
Thank you to Crucial for providing us with MX200 SSDs.
Thank you to G.Skill and Corsair for providing us with memory.
Thank you to MSI for providing us with the GTX 770 Lightning GPUs.
Thank you to OCZ for providing us with PSUs.
Thank you to Rosewill for providing us with PSUs and RK-9100 keyboards.

Load Delta Power Consumption

We'll start things off with a look at power consumption. Power consumption was tested on the system while in a single NVIDIA GTX 770 configuration with a wall meter connected to the OCZ 1250W power supply. This power supply is Gold rated, and as I am in the UK on a 230-240 V supply, leads to ~75% efficiency > 50W, and 90%+ efficiency at 250W, suitable for both idle and multi-GPU loading. This method of power reading allows us to compare the power management of the UEFI and the board to supply components with power under load, and includes typical PSU losses due to efficiency.

We are reporting the power consumption difference when idle and during an initial OCCT load. This is slightly skewed by the adjustment up the efficiency chain of our power supply, showing lower power CPUs consuming a little more, but despite this the qualitative comparison is a still a good place to start.

Power Consumption Delta: Idle to AVX

Despite our test being almost qualitative, it is exciting to see that in our power consumption limit test both CPUs score around their TDP values.

SKUs, Chipsets, & More Office and Web Performance
Comments Locked

196 Comments

View All Comments

  • Flunk - Tuesday, June 2, 2015 - link

    The 5820K is even available for < €400.
  • ImSpartacus - Tuesday, June 2, 2015 - link

    And it's not THAT expensive. It's certainly not cheap, but it's reasonable considering Intel's dominance.
  • bug77 - Tuesday, June 2, 2015 - link

    I would love to see a quad core clocked higher (or with better IPC). I don't use highly parallel software that much and I have no use for an integrated GPU.
    Sadly, with no competition, Intel has just been pumping the GPU for 4 generations in a row. Not that I blame them.
  • Taneli - Tuesday, June 2, 2015 - link

    Improving single threaded performance is extremely hard, just ask AMD. I'd expect improvements of 5-10% per generation for the next few years.
  • bug77 - Tuesday, June 2, 2015 - link

    They could still raise the clock speed. Intel CPUs could hit 4GHz on air for years. Even the top-level Haswell can do it, but it's 4 core+HT part. If I could replace my i5-2500k with a 4GHz quad-core, that would be good enough for me. Removing the integrated GPU from the equation would yield even more thermal legroom for the CPU. But it's not happening. With CPU performance securely in their hands, Intel is trying to secure positions in GPU and mobile markets (they'd be crazy not to at least try to diversify).

    Yet raising the clock speed conflicts with higher IPC. Because raising clock speed needs a longer pipeline and a longer pipeline means taking a more serious hit for branch mispredictions. AMD has managed to seriously raise IPC with AthlonXP. Intel did it with their Core architecture. And nothing happened ever since. Because there's no more pressure on Intel and AMD doesn't have the cash to invest anymore.
  • swaaye - Tuesday, June 2, 2015 - link

    You don't know that the GPU is impeding clock rate.

    Increases to clock rate increase power consumption dramatically. You can always overclock Broadwell yourself.

    IPC has been steadily improving. Core 2, and anything from AMD, are far behind at this point.
  • bug77 - Tuesday, June 2, 2015 - link

    "IPC has been steadily improving. Core 2, and anything from AMD, are far behind at this point."

    Not really. If you look here: http://www.anandtech.com/show/7003/the-haswell-rev...
    You'll see there's usually less than 10% gained (watch the i7 3.5GHz parts). And that's spread over three generations. Broadwell bring another 2-3%.
    And yes, AMD has been playing the same game, only they're stuck in their Athlon64 days.
  • MrSpadge - Tuesday, June 2, 2015 - link

    Dude, Intel is offering exactly this with i7 4790K. A really highly clocked quad core. Use your external GPU and the iGPU won't consume any power nor limit clock speed. In fact it makes the die larger and thus helps cooling a bit.
  • sonicmerlin - Tuesday, June 2, 2015 - link

    Oh please. What a garbage excuse. "It's hard"? Intel's more than doubled IPC/Watt in their mobile chips over the last 3-4 years. They just don't care about high end IPC because they have no competition.
  • vision33r - Tuesday, June 2, 2015 - link

    That is what the XEON offers a better price and value than the X58xx line if you don't need unlocked performance. You can buy many XEON 6 cores cheaper than the X58xx line.

Log in

Don't have an account? Sign up now