Intel is introducing their second generation of Optane Memory products: these are low-capacity M.2 NVMe SSDs with 3D XPoint memory that are intended for use as cache devices to improve performance of systems using hard drives. The new Optane Memory M10 brings a 64GB capacity to the product line that launched a year ago with 16GB and 32GB options.

The complete Optane Memory caching solution consists of an M.2 SSD plus Intel's drivers for caching on Windows, and firmware support on recent motherboards for booting from a cached volume. Intel launched Optane Memory with its Kaby Lake generation of processors and chipsets, and this generation is intended to complement Coffee Lake systems. However, all of the new functionality works just as well on existing Kaby Lake systems as with Coffee Lake.

The major new user-visible feature for this generation of Optane Memory caching is the addition of the ability to cache a secondary data drive, whereas previously only boot drives were possible. Intel refers to this mode as "data drive acceleration", compared to the system acceleration (boot drive) that was the only mode supported by the first generation of Optane Memory. Data drive acceleration has been added solely through changes to the Optane Memory drivers for Windows, and this feature was actually quietly rolled out with version 16 of Intel's RST drivers back in February.

Also earlier this year, Intel launched the Optane SSD 800P family as the low-end alternative to the flagship Optane SSD 900P. The 800P and the new Optane Memory M10 are based on the same hardware and an updated revision of the original Optane Memory M.2 modules. The M10 and the 800P use the same controller and the same firmware. The 800P is usable as a cache device with the Optane Memory software, and the Optane Memory M10 and its predecessor are usable as plain NVMe SSDs without caching software. The 800P and the M10 differ only in branding and intended use; the drive branded as the 58GB 800P is functionally identical to the 64GB M10 and both have the exact same usable capacity of 58,977,157,120 bytes.

Everything said about the 58GB Optane SSD 800P in our review of the 800P family applies equally to the 64GB Optane Memory M10. Intel hasn't actually posted official specs for the M10, so we'll just repeat the 800P specs here:

Intel Optane SSD Specifications
Model Optane SSD 800P Optane Memory
Capacity 118 GB 58 GB
M10 (64 GB)
32 GB 16 GB
Form Factor M.2 2280 B+M key M.2 2280 B+M key
Interface PCIe 3.0 x2 PCIe 3.0 x2
Protocol NVMe 1.1 NVMe 1.1
Controller Intel Intel
Memory 128Gb 20nm Intel 3D XPoint 128Gb 20nm Intel 3D XPoint
Sequential Read 1450 MB/s 1350 MB/s 900 MB/s
Sequential Write 640 MB/s 290 MB/s 145 MB/s
Random Read 250k IOPS 240k IOPS 190k IOPS
Random Write 140k IOPS 65k IOPS 35k IOPS
Read Latency 6.75 µs 7 µs 8 µs
Write Latency 18µs 18µs 30 µs
Active Power 3.75 W 3.5 W 3.5 W
Idle Power 8 mW 8 mW 1 W 1 W
Endurance 365 TB 365 TB 182.5 TB 182.5 TB
Warranty 5 years 5 years
Launch Date March 2018 April 2017
Launch MSRP $199 800P: $129
M10: $144
$77 $44

Rather than cover exactly the same territory as our review of the 800P, this review is specifically focused on use of the Optane Memory M10 as a cache drive in front of a mechanical hard drive. Thanks to the addition of the data drive acceleration functionality, we can use much more of our usual benchmark suite for this than we could with last year's Optane Memory review. The data drive acceleration mode also broadens the potential market for Optane Memory, to include users who want to use a NAND flash-based SSD as their primary storage device but also need a more affordable bulk storage drive. The combination of a 64GB Optane Memory M10 (at MSRP) and a 1TB 7200RPM hard drive is about the same price as a 1TB SATA SSD with 3D TLC NAND, and at higher capacities the combination of a hard drive plus Optane Memory is much cheaper than a SATA SSD.

Intel's Optane Memory system works as an inclusive cache: adding an Optane Memory cache to a system does not increase the usable storage capacity, it just improves performance. Data written to the cache will also be written to the backing device, but applications don't have to wait for the data to land on both devices.

Once enabled, there is no need or option for manual tuning of cache behavior. The operation of the cache system is almost entirely opaque to the user. After an unclean shutdown, there is a bit of diagnostic information visible as the cache state is reconstructed, but this process usually seems to only take a second or two before the OS continues to load.

Test Systems

Intel's Optane Memory caching drivers require a Kaby Lake or newer processor and chipset, but our primary consumer SSD testbed is still a Skylake-based machine. For last year's Optane Memory review, Intel delivered the 32GB module pre-installed in a Kaby Lake desktop. This time around, Intel provided a Coffee Lake system. Both of those systems have been used for tests in this review, and a few benchmarks of drives in a non-caching role have been performed on our usual SSD testbed.

AnandTech 2017/2018 Consumer SSD Testbed
CPU Intel Xeon E3 1240 v5
Motherboard ASRock Fatal1ty E3V5 Performance Gaming/OC
Chipset Intel C232
Memory 4x 8GB G.SKILL Ripjaws DDR4-2400 CL15
Graphics AMD Radeon HD 5450, 1920x1200@60Hz
Software Windows 10 x64, version 1709
Linux kernel version 4.14, fio version 3.1
Test Procedures
Comments Locked

96 Comments

View All Comments

  • FunBunny2 - Wednesday, May 16, 2018 - link

    one of the distinguishing points, so to speak, of XPoint is its byte-addressable protocol. but I've found nothing about the advantages, or whether (it seems so) OS has to be (heavily?) modified to support such files. anyone know?
  • Billy Tallis - Wednesday, May 16, 2018 - link

    The byte-addressability doesn't provide any direct advantages when the memory is put behind a block-oriented storage protocol like NVMe. But it does simplify the internal management the SSD needs to do, because modifying a chunk of data doesn't require re-writing other stuff that isn't changing. NVDIMMs will provide a more direct interface to 3D XPoint, and that's where the OS and applications need to be heavily modified.
  • zodiacfml - Friday, May 18, 2018 - link

    Quite impressive but for 32GB Optane drive, I can have a 250 GB SSD.

    The Optane might improve performance for fractions of a second over SSDs for applications but it won't help during program/driver installations or Windows updates which needs more speed.

    I'd reconsider it for a 64 GB Optane as a boot drive for the current price of the 32GB.
  • RagnarAntonisen - Sunday, May 20, 2018 - link

    You've got to feel for Intel. They spend a tonne of cash on projects like Larrabee, Itanium and Optane and the market and tech reviewers mostly respond with a shrug.

    And then everyone complains they're being complacent when it comes to CPU design. Mind you they clearly were - CPU performances increased at a glacial rate until AMD released a competitive product and then there was a big jump from 4 cores to 6 in mainstream CPUs with Coffee Lake. Still if the competition was so far behind you can afford to direct to R&D dollars to other areas.

    Still it all seems a bit unfair - Intel get criticised when they try something new and when they don't.

    And Itanium, Larrabee and Optane all looked like good ideas on paper. It was only when they had a product that it became clear that it wasn't competitive.
  • Adramtech - Sunday, May 20, 2018 - link

    since when is a 1st or 2nd Gen product competitive? I'm sure if they don't have a path to reach competitiveness, the project will be scrapped.
  • Keljian - Tuesday, May 29, 2018 - link

    While I don't doubt the tests are valid, I would really like to see a test with say PrimoCache - with the blocksize set to 4k. I have found in my own testing that Optane (with PrimoCache using optane as an L2 @ 4k) is very worthwhile even for my Samsung 950 pro.
  • Keljian - Tuesday, May 29, 2018 - link

    https://hardforum.com/threads/intel-900p-optane-wo... - Here are my benchmark findings for the 850 evo and 950 pro using the 32gb optane as L2 cache. You'll notice the 4k speeds stand out.
  • denywinarto - Tuesday, May 29, 2018 - link

    Thinking of using this with 12 tb hgst for a gamedisk drive for a ISCSI-based server, the data read is usually the same as they only game files. But occasionally new game gets added. Would it be a better option compared to raid? SSD are too expensive.
  • Lolimaster - Monday, October 1, 2018 - link

    Nice to use the 16GB as pagefile, chrome/firefox profile/cache
  • Lolimaster - Tuesday, October 2, 2018 - link

    It's better to use them as extra ram/pagefile or scratch disk.

Log in

Don't have an account? Sign up now